

$$T_A = T_S \quad (3)$$

$$\Gamma_A = -\Gamma_S \quad (4)$$

where

$T_{S,A}$ = transfer function for symmetric and antisymmetric excitation, respectively,

$\Gamma_{S,A}$ = reflection coefficient.

Thus the outputs at the various ports are

$$A_1 = 0$$

$$A_2 = T_S$$

$$A_3 = 0$$

$$A_4 = \Gamma_S.$$

The frequency response of the network is given by

$$L = 10 \log_{10} \frac{1}{|T_S|^2}. \quad (5)$$

Assuming $2\theta = \phi$, the first resonance occurs at $\phi_0 = \pi/2$. In the vicinity of resonance, (4) becomes

$$|T_S| = \frac{1}{(\cosh 2\alpha + \sinh 2\alpha) \cos \phi + j1}$$

$$\phi \approx \pi/2$$

$$\phi = 2\theta \quad (6)$$

For narrow bandwidth filters,

$$(\cosh 2\alpha + \sinh 2\alpha) \approx 4 \cosh^2 \alpha$$

$$\approx \frac{4Q_L}{\pi}$$

and

$$\cos \phi \approx \pi/2 - \phi,$$

then

$$T_S \approx \frac{1}{4Q_L (\pi/2 - \phi) + j1}$$

$$\approx \frac{1}{2Q_L \left(1 - \frac{2\phi}{\pi}\right) + j1} \quad (7)$$

Since $\phi_0 = \pi/2$,

$$\left(1 - \frac{2\phi}{\pi}\right) = \frac{\phi_0 - \phi}{\phi_0}$$

and

$$2Q_L \left(\frac{\phi_0 - \phi}{\phi_0}\right) = \omega'.$$

Therefore,

$$L = 10 \log_{10} (1 + \omega'^2). \quad (8)$$

Eq. (8) is equivalent to the insertion loss formula for a single resonator Butterworth filter.

Practical development of traveling-wave directional filters in strip-line form is time consuming due to unavoidable discontinuities which exist in the loop. The effects of dielectric post supports and loop corners are to cause the resonant frequency to shift from the derived value and to produce a double resonance in the frequency response. These effects may be taken into account, at least approximately, by replacing the transmission lines which represent the loop sides in the above analysis by a line having image parameters Z_I and ϕ_I . The image line is derived so as to take discontinuities into account. Fig. 5 shows the procedure for a discontinuity whose equivalent circuit is in

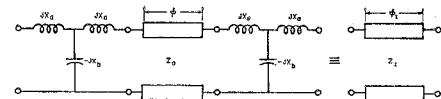


Fig. 5—Loop side equivalent with corner discontinuities.

the form of a symmetrical Tee (such as a mitered corner). A difficulty in pursuing this method further lies in the fact that expressions for the equivalent circuit parameters of mitered bends are not readily available. (Mitered bends are normally used in practice since they present the minimum discontinuity.) If right angle bends are considered³ it is found that

- 1) The image impedance characteristics are poor.
- 2) The terminal planes at which the equivalent circuit is known extends well into the region of the coupled lines. Thus local fields become a problem.

In summary, it has been shown that narrow bandwidth strip-line traveling-wave filters yield a Butterworth response. A method of accounting for loop discontinuities has been suggested. Difficulties in applying the method are outlined. Work in this area is continuing.

ROBERT D. STANLEY
Armour Research Foundation
Chicago, Ill.

³ A. A. Oliner and H. M. Altschuler, "Discontinuities in the center conductor of symmetric strip transmission line," IRE TRANS. ON MICROWAVE THEORY AND TECHNIQUES, vol. MTT-8, pp. 328-339; May, 1960.

Contributors

Isidore Bady (A'42-M'54-SM'56) was born in Brooklyn, N. Y., on July 21, 1913. He received the B. S. degree from the College of the City of New York, N. Y., in 1933, the M.E.E. degree from the Polytechnic Institute of Brooklyn, N. Y., in 1949, and the Ph.D. degree from Rutgers University, New Brunswick, N. J., in 1962.

He has been employed by the U. S. Army Electronics Research and Development Laboratory, Fort Monmouth, N. J., since 1941. Initially, he worked on instrumentation for the evaluation of components and materials. The frequency range covered was from dc through microwaves. Instrumentation under pulse conditions was also included. For the past seven years, he has

worked in the field of magnetic materials, particularly ferrites.

Dr. Bady is a member of Phi Beta Kappa and Sigma Xi.

Seymour B. Cohn (S'41-A'44-M'46-SM'51-F'59) was born in Stamford, Conn., on October 21, 1920. He received the B.E. degree in electrical engineering from Yale University, New Haven, Conn., in 1942, and the M.S. degree in communication engineering in 1946, and the Ph.D. degree in engineering sciences and applied physics in 1948,

both from Harvard University, Cambridge, Mass.

From 1942 to 1945 he was employed as a special research associate by the Radio Research Laboratory of Harvard University, and also represented that laboratory as a technical observer with the U. S. Army Air Force in the Mediterranean theater of operations. He worked at Sperry Gyroscope Company, Great Neck, N. Y., from 1948 to 1953, where he held the position of research engineer in the microwave instruments and components department. From 1953 to 1960, he was with the Stanford Research Institute, Menlo Park, Calif., as head of the Microwave Group and, since 1957, as manager of the Electromagnetics Laboratory. In July, 1960, he joined Rantec Corporation, Calabasas, Calif., as Vice President and Technical Director.

Dr. Cohn is a member of Tau Beta Pi and Sigma Xi. He is a member and ex-chairman of the PTGMIT Administrative Committee.

Thomas Collins was born in Passaic, N. J., on July 14, 1934. He received the B.S. degree in physics from Fairleigh Dickinson University, Teaneck, N. J., in 1958, and is presently studying to fulfill the requirements for the M.S.

degree in physics at the Stevens Institute of Technology, Hoboken, N. J.

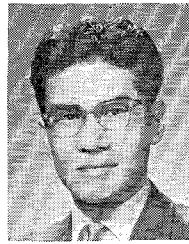
In 1958 he became associated with the Electronics Parts and Materials Division of the U. S. Army Electronics Research and Development Laboratory, Fort Monmouth, N. J., as a physicist, investigating ferrite materials for microwave applications.

Mr. Collins is a member of the American Physical Society.

Ann Yung Hu (S'56-M'58) was born in Hunan, China. She received the B.S.E.E. degree from the National Hunan University, China, in 1944, and the M.S.E.E. degree from the Illinois Institute of Technology, Chicago, in 1957. She did graduate work at the University of Washington, Seattle.

From 1944 to 1952 she was on the staff of the Nationalist Chinese Air Force Communication School and the Taipei Institute of Technology as a radio, radar, and loran instructor; and the following two years she worked as a research engineer for the Radio Wave Propagation Research Laboratory of Taiwan, China. In 1956 she joined the Admiral Radio Company, Chicago, Ill., as a research engineer, studying radiation effects of microwave components, and the following year she was with the Electronics Research Laboratory of the Illinois Institute of Technology. Since 1958 she has been with the Boeing Company, Renton, Wash.

She is an associate member of Sigma Xi and member of SIAM.



Donald P. Devor was born in Detroit, Mich., on June 16, 1925. He served in the Navy from 1943 to 1946. He attended Wayne State University, Detroit, Mich., and the University of California at Los Angeles, from

which he received the B.A. and M.A. degrees in physics in 1950 and 1951.

From 1951 to 1954 he was employed by Convair, San Diego, Calif., first as a Dynamics Engineer in the Atlas program, and then as a Research Engineer in operations analysis. He then joined the Jet Propulsion Laboratory as a Research Engineer, and for three years served in work relating to the guidance and control of rockets. Since joining Hughes Research Laboratories, Malibu, Calif., in 1957, he has been engaged in experimental and theoretical work in the electron paramagnetic resonance and optical spectroscopy of solids, and the application of these disciplines to solid-state masers and lasers.

Mr. Devor is a member of the American Physical Society.

Akira Ishimaru (M'58-SM'63) was born in Fukuoka, Japan, on March 16, 1928. He received the B.S. degree from Tokyo University in 1951, and the Ph.D. degree in electrical engineering from the University of Washington, Seattle, in 1958.

In 1951 he worked for the Electrotechnical Laboratories, Tokyo, Japan, until his arrival in the U. S. in 1952 as a graduate student. From 1954 to 1958 he was an Instructor at the University of Washington, and in the summer of 1956 he was employed by the Bell Telephone Laboratories, Holmdel, N. J., where he worked on antenna

problems. He was an Assistant Professor of electrical engineering at the University of Washington from 1954 to 1961, and became Associate Professor in 1961. He has also been a consultant to the Boeing Airplane Company, Seattle, Wash., in microwave antennas and propagation. He has been engaged in research on antenna pattern synthesis, propagation, and diffraction and scattering.

Dr. Ishimaru is a member of Sigma Xi.

❖

Ralph Levy was born in London, England, on April 12, 1932. He completed his undergraduate studies in mathematics and physics at St. Catharine's College, Cambridge, receiving the B.A. degree in 1953, and the M.A. degree in 1957.

From September, 1953, to July, 1959, he was a member of the scientific staff at the Applied Electronics Laboratories of the General Electric Company, Stanmore, Middlesex, where he was engaged in the development of microwave components and systems. In 1959 he joined Mullard Research Laboratories, Redhill, Surrey, as a Senior Physicist, and now assists in the direction of a section working on broad-band microwave techniques. His interests include component design, network synthesis, broad-band VHF amplifiers, and systems research and development. At present he is also a part-time internal research student for the Ph.D. degree at Queen Mary College, University of London.

❖

S. R. Seshadri (SM'62), for a photograph and biography, please see page 300 of the July, 1962, issue of these TRANSACTIONS.